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Abstract. Next point-of-interest (POI) recommendation has been a
prominent and trending task to provide next suitable POI suggestions
for users. Current state-of-the-art studies have achieved considerable per-
formances by modeling user-POI interactions or transition patterns via
graph- and sequential-based methods. However, most of them still could
not well address two major challenges: 1) Ignoring important spatial-
temporal correlations during aggregation within user-POI interactions;
2) Insufficiently uncovering complex high-order collaborative signals across
users to overcome sparsity issue. To tackle these challenges, we pro-
pose a novel method Multi-View Spatial-Temporal Enhanced Hyper-
graph Network (MSTHN) for next POI recommendation, which jointly
learns representations from local and global views. In the local view,
we design a spatial-temporal enhanced graph neural network based on
user-POI interactions, to aggregate and propagate spatial-temporal cor-
relations in an asymmetric way. In the global view, we propose a sta-
ble interactive hypergraph neural network with two-step propagation
scheme to capture complex high-order collaborative signals. Further-
more, a user temporal preference augmentation strategy is employed to
enhance the representations from both views. Extensive experiments on
three real-world datasets validate the superiority of our proposal over
the state-of-the-arts. To facilitate future research, we release the codes
at https://github.com/icmpnorequest/DASFAA2023_MSTHN.

Keywords: Next POI recommendation · Spatial-temporal graph · Hy-
pergraph neural network

1 Introduction

Location-based social networks (LBSNs) have provided open platforms for users
to share their experience at different point-of-interests (POIs), such as restau-
rants and shopping malls. Therefore, POI recommender systems have been widely

https://github.com/icmpnorequest/DASFAA2023_MSTHN


2 Lai et al.

Fig. 1. A motivating example of our proposed framework

utilized to help users and service providers for exploration and targeted advertis-
ing, respectively. Among various POI recommendation tasks, next POI recom-
mendation is arguably a prominent and trending one. Different from conventional
POI recommendation focusing on user’s general long-term preference, next POI
recommendation considers user’s recent spatial-temporal contexts [21] and long-
and short-term preferences for next suitable location suggestions [16,17,31,10].

Prior next POI recommendation approaches are mainly based on sequential
methods, ranging from Markov chain [2] to recurrent neural networks (RNNs)
[3]. These methods treat it as a general sequence prediction task, and ignore
important spatial-temporal information. Subsequently, researchers extend var-
ious of RNNs [17,31] by incorporating geographical distance, time intervals or
spatio-temporal gates. However, RNN-based methods are limited to short-term
contiguous visits. Inspired by the great success of self-attention mechanism [18]
in natural language processing field, researchers [12,14] employ it to capture
long-term dependencies and correlations between non-consecutive POIs. Never-
theless, they only focus on intra-sequence learning but fail to explore beyond
sequence information. Recently, graph-based methods [10,4,13,8,20,15] leverage
graph neural networks (GNNs) to refine latent representations of POIs from a
global view. Despite their success in next POI recommendation, there still exist
some limitations to be better explored.

1) First, ignoring spatial-temporal correlations during aggregation
within a user-POI interaction graph. In next POI recommendation, pre-
vious GNN-based studies [10,4,13,8,20,15] mainly utilize GNNs to enrich repre-
sentations from a global view. However, they either ignore or could not directly
model spatial-temporal correlations during aggregation and propagation with
GNNs. Take David and Anna in Figure 1 for example, they visit the same POIs
(coffee shop, office, restaurant and gym) but in different sequential order. If only
aggregating their interacted POIs, the embeddings of them would be the same.
However, latent representations of David and Anna should be different in fact,
due to different sequential order. Additionally, since each user has her/his ac-
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ceptance on distance, spatial influences should also be taken into account, as
illustrated in Patrick’s trajectory. Thus, how to mine and fuse spatial-temporal
correlations within a user-POI interaction graph is well deserved to be explored
in next POI recommendation.

2) Second, insufficient to uncover high-order collaborative signals.
Some researchers [10] in next POI recommendation try to capture collaborative
signals [19] by sampling one-hop POI neighbors randomly. Unfortunately, they
overlook the high-order connectivity among POIs. As shown in Figure 1, restau-
rant and gym are high-order neighbors of coffee shop in the trajectory of David.
While in Sherry’s, its high-order neighbors are cinema and shopping mall. Thus,
restaurant, gym, cinema and shopping mall are potentially related, and there
might exist implicit high-order collaborative signals among them. If uncovering
such signals, it would help alleviate the data sparsity issue.

To this end, we propose a novel framework Multi-View Spatial-Temporal
Enhanced Hypergraph Network (MSTHN) for next POI recommendation. To
capture spatial-temporal correlations within user-POI interactions, we first de-
sign a local spatial-temporal enhanced graph neural network, which aggregates
and propagates in an asymmetric way. Then, we construct a global interactive hy-
pergraph to sufficiently uncover high-order collaborative signals with a designed
two-step propagation scheme. Subsequently, in contrast to simple concatenation,
we utilize a user temporal preference augmentation strategy to enhance the rep-
resentations from both local and global views. Empirical results show that our
MSTHN consistently outperforms state-of-the-art methods, e.g., average relative
improvement of 36.20% over LightGCN, 20.36% over SGRec, 17.10% over STAN
and 11.09% over DHCN in terms of Recall@10.

We summarize our main contributions as follows:

– To the best of our knowledge, this is the first attempt at multi-view spatial-
temporal hypergraph network in next POI recommendation, which captures
spatial-temporal correlations and high-order collaborative signals from local
and global views.

– We propose a novel local spatial-temporal enhanced graph neural network
to jointly model complex user-POI interactions, POI-POI sequential rela-
tions and non-adjacent POI-POI geographical relations, which aggregates
and propagates spatial-temporal correlations in an asymmetric way.

– We design an interactive hypergraph to depict global interaction dependen-
cies, which empowers to distill high-order collaborative signals effectively.

– Extensive experiments on three public available datasets validate the effec-
tiveness of our proposed MSTHN over various state-of-the-art methods for
next POI recommendation.

2 Related Work

2.1 Next POI Recommendation.

Next POI recommendation aims to suggest next suitable location for users based
on their recent spatial-temporal context and visiting behaviours. Early studies in
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next POI recommendation are mainly based on sequential methods, ranging from
Markov chain [2] to recent RNN and its variants [3,31,17]. Limited to short-term
contiguous visits in these methods, more recent studies [14,12] solve by utiliz-
ing self-attention mechanism [18] to model spatial-temporal information in an
explicit or implicit way. However, the above studies only rely on each user’s tra-
jectory and overlook the potential collaborative signals among users. Since graph
structure is naturally suitable to represent data in LBSN, some researchers have
started to leverage graph-based techniques for next POI recommendation, rang-
ing from graph [23] and hypergraph embeddings [24,25] to more recent GNNs
[10,4,13,8,20,15]. However, most GNNs-based works [10,4,13,8,20] do not con-
sider important spatial-temporal information within user-POI interactions. Rao
et al. [15] noticed the importance of spatial-temporal and chronological infor-
mation for next POI recommendation, but they still could not directly model
such information in GNNs during aggregation and propagation. To tackle the
challenge, we propose a local spatial-temporal enhanced graph neural network to
capture spatial-temporal correlations during aggregation and propagation within
a user-POI interaction graph.

2.2 Hypergraph Neural Network-based Recommendation.

Due to the extension structure and the ability in modeling complex high-order
dependencies, hypergraph neural network [5,1] has been recently developed in
various recommendation tasks, such as session recommendation [22,11], social
recommendation [29,6] and group recommendation [30]. Inspired by these works,
we design a learnable interactive hypergraph neural network to uncover global
high-order collaborative signals across users.

3 Problem Formulation

Let U = {u1, u2, ..., u|U|} and L = {l1, l2, ..., l|L|} be a set of users and POIs,
respectively. Each POI l ∈ L has unique geographical coordinates (longitude,
latitude) tuple, i.e., (lon, lat). For each user u ∈ U , we split her/his trajectory
sequence into several sessions by specific time interval (i.e., 1 day) and obtain
a trajectory sequence Su = {Su

1 , S
u
2 , ..., S

u
n}, where n denotes the number of

sessions. Each session is denoted as Su
i = {(luj , tluj )|j = 1, 2, ...}, where each

tuple (luj , tluj ) indicates user u visited POI luj at timestamp tluj .

Given a target user u and her/his trajectory sequence Su, the goal of next
POI recommendation is to recommend top-K POIs that u may visit in the next
timestamp.

4 Methodology

In this section, we present our proposed frameworkMulti-View Spatial-Temporal
Enhanced Hypergraph Network (MSTHN) in detail. As illustrated in Figure 2,



MSTHN for Next POI Recommendation 5

Fig. 2. The framework of our proposed MSTHN. It mainly contains three modules:
1) Local spatial-temporal enhanced graph neural network module to capture spatial-
temporal correlations; 2) Global interactive hypergraph neural network module to un-
cover high-order collaborative signals; 3) User temporal preference augmentation mod-
ule to augment user preference for prediction.

our MSTHN mainly consists of: 1) Local spatial-temporal enhanced graph neural
network module captures spatial-temporal correlations within a user-POI inter-
action graph in the local view; 2) Global interactive hypergraph neural network
module uncovers high-order collaborative signals with a two-step propagation
scheme in the global view; 3) User temporal preference augmentation module
fuses POIs latent representations from both local and global views and augments
long- and short-term user temporal preference; 4) Prediction and optimization
module predicts visiting probability from the learned POIs and users latent rep-
resentations.

4.1 Local Spatial-Temporal Enhanced Graph Neural Network
Module

The local spatial-temporal enhanced graph neural network module aims to cap-
ture spatial-temporal correlations during aggregation and propagation within
user-POI interactions in the local view.

Local Spatial-Temporal Enhanced Graph Construction. To represent
user-POI interactions and spatial-temporal correlations among interacted POIs,
we firstly construct the local spatial-temporal enhanced graph GL = (VL, EL)
(Figure 2). In the local graph GL, nodes VL are users and POIs, and edges EL
consist of user-POI interactions, POI-POI sequential relations and non-adjacent
POI-POI geographical relations.
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Spatial-Temporal Message Embedding. To leverage important spatial-
temporal information within local spatial-temporal enhanced graph GL, we firstly
sort the interacted POIs of user u chronologically and the sorted POIs set is
denoted as Tu = {lu1 , lu2 , ..., lum}, where m is the sequence length of user u. Then,
through look-up table, we obtain the initial embeddings for each POI in the
sorted set Eu = {eu1 , eu2 , ..., eum}, where eui ∈ Rd and the embedding dimension is
d. Since the interacted POIs are in temporal sequential dependencies, we employ
positional encoding [18], which has been proved effective in sequence modeling,
to represent the sequential relationship among POIs. The position embeddings
of the sorted POI set is Pu = {pu

1 ,p
u
2 , ...,p

u
m}, where pu

i ∈ Rd.
As described in Figure 1, each user has different spatial acceptance on choos-

ing POIs. Thus, the geographical influence among interacted POIs should be
taken into account. To achieve this goal, we construct a geographical adjacent
matrix Ageo ∈ Rm×m to reflect the edge constraints among interacted POIs. For
each (lui , l

u
j ) pair in the sorted set Tu, the geographical influence aij is defined

as:
aij = exp(−dist(di, dj)

2) (1)

here we choose Haversine distance as dist(·, ·) and di denotes the geographi-
cal coordinates of POI lui . Additionally, we use ∆d as the distance threshold,
if dist(di, dj) > ∆d, we set aij = 0. For simplicity, we modify Gaussian kernel
function to represent the geographical influence between two POIs, which depicts
the inverse correlation between geographical influence and distance, and controls
the constraint ranging from 0 to 1. To capture the non-linear geographical influ-
ence among interacted POIs, we employ the graph convolutional network [9] as
follows:

Vu = AgeoE
uWgeo + bgeo (2)

where Wgeo ∈ Rd×d represents a transition matrix and bgeo ∈ Rd is a bias
vector.

Subsequently, we obtain the spatial-temporal message embeddings Zu = Eu+
Pu + Vu by performing element-wise addition on initial embeddings, position
embeddings and geographical embeddings, where Zu ∈ Rm×d.

Spatial-Temporal Graph Aggregation Layer. To aggregate important
spatial-temporal message collected from interacted POI neighbors in graph GL,
we design a novel spatial-temporal graph aggregation layer that models temporal
dependency and non-linear geographical influence among POIs in the local view.

We utilize self-attention [18], an effective mechanism in sequence modeling, to
capture sequential dependency and assign different weights to each POI within
the interactions. Given the spatial-temporal message embeddings Zu ∈ Rm×d,
the spatial-temporal graph aggregation layer firstly performs multi-head scaled
dot-product attention operation to get spatial-temporal aware representations
hTu ∈ Rm×d as follows:

hTu
i = softmax

(
(ZuWQ)(Z

uWK)T√
D′

)
(ZuWV ) (3)

hTu = FFN([hTu
1 ;hTu

2 ; ...;hTu

H ]) (4)
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whereH denotes the number of heads in multi-head attention, [·; ·] represents the
concatenation operation and D′ =

√
d/H. Here, WQ, WK and WV ∈ Rd×D′

are shared weight transformations. Additionally, feed-forward network could be
represented as FFN(x) = xW0 + b0, where W0 ∈ RD′×d and b0 ∈ Rd are
trainable parameters.

Then, we apply mean pooling to obtain local central user representation
xu
L = 1

m+1

∑m
i=1 h

Tu
i , where xu

L ∈ Rd. It aggregates spatial-temporal information
from one-hop neighbors in the local view and updates corresponding local node
embeddings.

The user-item interaction matrix is R ∈ R|U|×|L| and we define the adjacency
matrix A ∈ R(|U|+|L|)×(|U|+|L|) of local spatial-temporal enhanced graph GL as:

A =

(
0 R
RT 0

)
(5)

Inspired by LightGCN [7], we also omit non-linear transformation and stack
several spatial-temporal graph aggregation layers for propagation to update
nodes embeddings:

X
(k+1)
L = (D

− 1
2

L AD
− 1

2

L )X
(k)
L (6)

where DL ∈ R(|U|+|L|)×(|U|+|L|) is a diagonal matrix and the 0-layer embed-

ding matrix X
(0)
L ∈ R(|U|+|L|)×d contains initial users embeddings and POIs

embeddings. After propagating KL layers, the final local nodes representations
XL ∈ R(|U|+|L|)×d are generated by aggregator (i.e., mean-pooling or sum-
pooling).

Different from STAM [27], our proposed spatial-temporal graph aggregation
layer models both temporal sequential dependency and non-linear geographical
influence among POIs jointly in the local view. Since a user may visit the same
POI several times, if taking the chronologically interacted users into account,
it would lead to a sub-optimal performance. That is, we only perform spatial-
temporal graph aggregation operation in an asymmetric way for local central
user node. Detailed empirical analysis would be introduced in section 5.5.

4.2 Global Interactive Hypergraph Neural Network Module

The global interactive hypergraph neural network module aims to uncover high-
order collaborative signals effectively with a two-step propagation scheme in the
global view.

Global Interactive Hypergraph Construction.Motivated by the strength
of hypergraph for unifying nodes beyond pairwise relations, we construct an in-
teractive hypergraph GH = (VH , EH) to uncover high-order collaborative signals
across sessions. In the hypergraph GH , we represent each user’s session in her/his
trajectory sequence as an hyperedge and the interacted POIs within the session
consist of nodes in the hyperedge (Figure 2). Incidence matrix H ∈ R|L|×|S| is
introduced to describe the topology structure of hypergraph, with entries defined
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as:

h(v, e) =

{
1, if e connects v,

0, otherwise
(7)

For each node v ∈ VH , its degree is defined as d(v) =
∑

e∈EH
Weh(v, e),

calculating the occurrence of node v in all hyperedges. We is an assigned positive
weight and all the weights formulate a diagonal matrix W ∈ R|S|×|S|. For each
hyperedge e ∈ EH , its degree is d(e) =

∑
v∈VH

h(v, e). All the node degree and
hyperedge degree form diagonal node degree matrix DH and diagonal hyperedge
degree matrix B respectively.

Hypergraph Convolutional Network. After the construction of hyper-
graph GH , we develop a hypergraph convolutional network with two-step infor-
mation propagation scheme to capture high-order POI-level relations iteratively.
In the node-hyperedge-node propagation scheme, hyperedges serve as mediums
for nodes aggregation within the hyperedge and propagation across hyperedges
(Figure 2). Particularly, we design our hypergraph convolutional network as fol-
lows:

X
(k+1)
H = D

− 1
2

H HWB−1HTD
− 1

2

H X
(k)
H (8)

where X
(k)
H ∈ R|L|×d represents the embeddings of POIs, encoded from the k−th

hypergraph convolutional network layer. In the first node to hyperedge propaga-

tion stage, we use multiplication HTX
(k)
H to denote the aggregation process, for

HT reflects the hyperedge-node relation. After aggregating nodes representations
within each hyperedge, we then premultiply H to aggregate information from
hyperedges to nodes. Since incidence matrix H represents the node-hyperedge
relation, the second hyperedge to node propagation stage aims to leverage global
information beyond current hyperedge to enrich nodes representations.

Distinct to spectral hypergraph convolutional HGNN [5], we omit nonlinear
activation function for simplification. Unlike the simplified row normalization in
DHCN [22], we keep the same row normalization as HGNN since it is more stable
in propagation than the simplified one D−1HWB−1HT in DHCN. According
to [5], the symmetric hypergraph Laplacian matrix I − D− 1

2HWB−1HTD− 1
2

is a positive semi-definite matrix, where I ∈ R|L|×|L|. Therefore, the eigenvalue
of D− 1

2HWB−1HTD− 1
2 is no larger than 1, solving the instability problem in

propagation.
After propagating KH hypergraph convolutional layers, we average the POIs

representations obtained at each layer and output the final global POIs repre-
sentations XH ∈ R|L|×d.

4.3 User Temporal Preference Augmentation Module

The user temporal preference augmentation module aims to fuse the learned
representations from both local and global views and augment temporal-aware
user preference.

In next POI recommendation, the final decision heavily depends on user’s
recent preference. Instead of simply aggregating or concatenating the interacted
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POIs representations, inspired by [22], we integrate the reversed position embed-
dings for user temporal preference augmentation. After learning nodes represen-
tations from both views, we could obtain the embeddings of all POIs by element-
wise addition, e.g.,XL = XL

L+XH , whereXL
L ∈ R|L|×d andXH ∈ R|L|×d denote

POIs embeddings in the local and global view, respectively. The i-th POI tem-
poral augmented embedding xu∗

i in user u’s sorted sequence Tu is defined as
following:

xu∗

i = tanh(W1[x
u
i ;pm+1−i] + b1) (9)

where W1 ∈ Rd×2d and b1 ∈ Rd are trainable parameters. xu
i ∈ Rd could be

indexed from POIs embeddings XL. Moreover, pm+1−i ∈ Rd denotes reverse
position embedding.

Thus, with soft-attention mechanism, we could get temporal preference aug-
mented embedding xu

T ∈ Rd of user u by assigning different attention weights:

xu
T =

m∑
i=1

αix
u∗

i (10)

αi = qTσ(W2x
u∗

+W3x
u∗

i + b2) (11)

where q ∈ Rd, W2,W3 ∈ Rd×d and b2 ∈ Rd are trainable attention parameters.
xu∗ ∈ Rd is aggregated by performing mean-pooling on all the interacted POIs
embeddings of user u. σ denotes sigmoid activation function here.

4.4 Prediction and Optimization Module

Having obtained user u’s local representation xu
L ∈ Rd and local-global aware

temporal-augmented user representation xu
T ∈ Rd, we apply element-wise addi-

tion to get the final user representation as u = xu
L + xu

T ,u ∈ Rd. After that, we
compute the score by doing inner product between the final user representation
u and target POI representation xl ∈ Rd:

ŷu
l = softmax(uTxl) (12)

We formulate the learning objective as a cross-entropy loss function, which
has been largely used in next POI recommendation:

J = −
∑
u∈U

∑
i∈Tu

|L|∑
j=1

yu
i,j log(ŷ

u
i,j) + λ∥Θ∥2 (13)

where yu
i,j is an indicator that is equal to 1 if lj is the ground truth and 0

otherwise. ∥Θ∥2 represents the L2 regularization of all parameters for preventing
over-fitting under the control of λ.

5 Experiments

In this section, we present our empirical results to evaluate the effectiveness of
our MSTHN.
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Table 1. Dataset statistics

#Users #POIs #Check-ins #Sessions Sparsity

NYC 834 3,835 44,686 8,841 98.61%
TKY 2,173 7,038 308,566 41,307 97.82%

Gowalla 5,802 40,868 301,080 75,733 99.87%

5.1 Experimental Setting

Datasets We conduct experiments on three public LBSN datasets: Foursquare-
NYC (NYC for abbreviation), Foursquare-TKY (TKY) [26] and Gowalla[28].
NYC and TKY were collected from Apr. 2012 to Feb. 2013 in New York City
and Tokyo, respectively, while Gowalla contains check-ins from Feb. 2009 to Oct.
2010. Following [17], we first eliminate unpopular POIs that are visited by less
than 10 users and 5 users for Gowalla and Foursquare, respectively. Then, we
split each user’s complete check-ins into sessions within 1 day and remove those
which includes fewer than 3 records. Furthermore, inactive users with less than
5 sessions for Gowalla and 3 sessions for Foursquare are filtered out. According
to [17], the first 80% sessions of each user are used for training and the rest for
testing. The statistics of pre-processed datasets are shown in Table 1.

Evaluation Metrics Following previous works in next POI recommendation,
we adopt two widely used evaluation metrics: Recall@K and Normalized Dis-
counted Cumulative Gain (NDCG@K). Specifically, Recall@K measures the rate
of the label within top-K recommendations and NDCG@K reflects the quality
of ranking lists. In this paper, we repeat experiments on each metric for 10 times
and report the averaged Recall@K and NDCG@K with the popular K ∈ {5, 10}.

Baselines We compare our MSTHN with following representative methods for
next POI recommendation, including 1) statistical-based method UserPop; 2)
RNN-based methods GRU, STGN and LSTPM; 3) self-attention-based method
STAN; 4) GNN-based methods LightGCN and SGRec and 5) hypergrpah neural
network-based method DHCN:

– UserPop: It ranks the most popular POIs according to each user’s visiting
frequency.

– GRU [3]: A popular variant of RNN, which controls the information flow
with two gates.

– STGN [31]: A state-of-the-art LSTM-based model, which introduces spatial
and temporal gates for users’ long- and short-term preferences.

– LSTPM [17]: A state-of-the-art LSTM-based model, which captures long-
and short-term preferences with a non-local network and geo-dilated LSTM.

– STAN [14]: A state-of-the-art method based on self-attention mechanism,
which explicitly models spatial-temporal influences within a user’s check-in
sequence.
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– LightGCN [7]: A state-of-the-art simplified GNN-based collaborative fil-
tering framework, which omits the non-linear activation and feature trans-
formation during propagation.

– SGRec [10]: A state-of-the-art GNN-based method, which proposes Seq2Graph
augmentation and captures collaborative signals among one-hop neighbors.
For fairness comparison, we remove the POI categorical information that
other methods do not use.

– DHCN [22]: A state-of-the-art hypergraph neural network-based method
for session recommendation, which could be applied for next POI recom-
mendation.

Parameter Settings Our experiments are conducted with PyTorch 1.9.1 on a
32 GB Tesla V100 GPU. For baselines, we firstly preserve the settings as provided
in original papers and fine-tune each model’s hyperparameters on three datasets.
For our MSTHN, we adopt Adam as optimizer with a learning rate of 1e-3, weight
decay of 1e-5 and dropout rate of 0.3. We apply the same dimension size d = 128
for user and POI embeddings and set batch size as 100. In each batch, we pad
sessions which do not meet the maximum session length in batch. Furthermore,
we empirically choose 2.5km (for NYC and TKY) and 100km (for Gowalla) as
distance threshold and use 1 layer spatial-temporal graph aggregation layer in
all datasets. The number of stable hypergraph convolutional layer and head of
self-attention is chosen from {1, 2, 3, 4} and {1, 2, 4, 8, 16}, respectively.

5.2 Performance Comparison

The results of all the methods are reported in Table 2. For the results, we have
the following observations.

Our proposed MSTHN achieves the best results on all datasets.
On NYC dataset, our MSTHN improves the performance over the best baseline
by 8.84%-15.58%. Additionally, MSTHN outperforms the best results by 5.12%-
13.69% on TKY dataset and 7.12%-8.98% on Gowalla dataset. We contribute the
improvements to the following aspects: 1) Capturing important spatial-temporal

Table 2. Performances comparison on three datasets. The best and the second best
performances are bolded and underlined, respectively. The improvements are calculated
between the best and the second best scores.

Method
NYC TKY Gowalla

Rec@5 Rec@10 NDCG@5 NDCG@10 Rec@5 Rec@10 NDCG@5 NDCG@10 Rec@5 Rec@10 NDCG@5 NDCG@10

UserPop 0.2866 0.3297 0.2283 0.2423 0.2229 0.2668 0.1718 0.1861 0.0982 0.1489 0.0907 0.1336
GRU 0.236 0.2471 0.2252 0.2279 0.1549 0.1734 0.1371 0.1436 0.1282 0.1606 0.1102 0.1225

STGN 0.2371 0.2594 0.2261 0.2307 0.2112 0.2587 0.1482 0.1589 0.1600 0.2041 0.1191 0.1333
LSTPM 0.2495 0.2668 0.2425 0.2483 0.2203 0.2703 0.1556 0.1734 0.2021 0.2510 0.1523 0.1681
STAN 0.3523 0.3827 0.3025 0.3137 0.2621 0.3317 0.2074 0.2189 0.2449 0.2878 0.1837 0.1942

LightGCN 0.3221 0.3488 0.2958 0.3042 0.2213 0.2594 0.1977 0.2098 0.2356 0.2590 0.1801 0.1915
SGRec 0.3451 0.3723 0.3052 0.3178 0.2537 0.3213 0.2221 0.2447 0.2395 0.2813 0.1862 0.2002
DHCN 0.3745 0.3966 0.3126 0.3203 0.3172 0.3454 0.2442 0.2543 0.2653 0.3124 0.2038 0.2191

MSTHN 0.4076 0.4398 0.3612 0.3702 0.3378 0.3927 0.2567 0.2721 0.2842 0.3396 0.2221 0.2365
%Improv. 8.84% 10.89% 15.55% 15.58% 6.49% 13.69% 5.12% 7.00% 7.12% 8.71% 8.98% 7.94%
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correlations within user-POI interactions in the local view. 2) Uncovering com-
plex high-order collaborative signals in the global view.

Capturing spatial-temporal correlations is important for next POI
recommendation. Methods which leverage spatial-temporal information ex-
plicitly or implicitly perform better than that do not use. For example, our
MSTHN reaches up to 15.58% on NDCG@10 on NYC dataset than DHCN. On
sparser Gowalla dataset, our MSTHN still outperforms DHCN on both met-
rics. Leveraging temporal information, SGRec surpasses LightGCN by 23.86%
in terms of Recall@10 on TKY dataset. Beneficial from well-designed spatial-
temporal gates, LSTPM and STGN also outperforms GRU on three datasets,
especially on more sparser Gowalla dataset.

Uncovering high-order collaborative signals is effective and signif-
icant to improve quality of recommendation. From Table 2, hypergraph
neural network-based methods (our MSTHN and DHCN) perform better than
other baselines. For example, on TKY dataset, our MSTHN improves Recall@10
by 22.22% and 51.39% against SGRec and LighGCN. The major reason for Light-
GCN is over-smoothing effect that makes nodes representation indistinguishable
with deeper layer. Since SGRec performs one-hop neighbors sampling randomly,
it would cause information losses. STAN performs better than SGRec on Recall
metrics on three datasets, but worse on NDCG. Thus, uncovering high-order
collaborative signals contributes more on exploring potential POIs but lacks of
exploiting sequential dependency.

5.3 Ablation Study

Next we investigate the underlining mechanism of our MSTHN with three ab-
lated models: 1) MSTHNw/o local that removes local spatial-temporal enhanced
graph neural network module; 2) MSTHNw/o global that removes global inter-
active hypergraph neural network module; 3) MSTHNw/o temporal that removes
user temporal preference augmentation module; 4) Localw/o spatial that removes
spatial information in the local view; 5) Localw/o temporal that removes temporal
information in the local view. From Table 3, we have the following observations:

Table 3. Ablation study on MSTHN w.r.t. Recall@10 and NDCG@10.

Method
NYC TKY Gowalla

Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10

MSTHNw/o local 0.4275 0.3620 0.3734 0.2606 0.3125 0.2207
MSTHNw/o global 0.3812 0.3033 0.3105 0.2388 0.2832 0.1917

MSTHNw/o temporal 0.4013 0.3105 0.3562 0.2541 0.3098 0.2126

Localw/o spatial 0.4333 0.3651 0.3791 0.2595 0.3174 0.2187
Localw/o temporal 0.4387 0.3698 0.3874 0.2632 0.3259 0.2241

MSTHN 0.4398 0.3702 0.3927 0.2721 0.3396 0.2365
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First, when removing the local view module, MSTHNw/o local decreases slightly
compared with the other two variants due to the losses of spatial-temporal cor-
relations. The local view affects the correctness of recommendation more than
the quality. Specifically, the average decline rates on three datasets are 5.57%
on Recall@10 and 4.61% on NDCG@10. Second, when removing the global view
module, MSTHNw/o global drops clearly. It strongly indicates the importance
of global hypergraph network, for it could represent beyond pairwise relations
and model distant POIs. Additionally, it proves the significance of high-order
collaborative signals for next POI recommendation. Third, when removing the
user temporal preference augmentation module, the variant MSTHNw/o temporal

is less competitive than the complete MSTHN. It implies the effectiveness of
user temporal preference augmentation for next POI recommendation. Fourth,
spatial-temporal information is essential in the local view and spatial information
contributes more to performances.

5.4 Hyperparameter Analysis

We further qualitatively analyze the impacts of layer number and head number
in MSTHN.

Impact of Layer Number. To investigate the impact of stacking hyper-
graph convolutional layers, we conduct experiments with number of layer in
{1, 2, 3, 4}. As illustrated in Figure 3, our MSTHN achieves the best perfor-
mances by stacking 3 layers on NYC dataset, 4 layers on TKY dataset, and 2
layers on Gowalla dataset. The results prove that our MSTHN could uncover and
distill high-order collaborative signals effectively, especially on denser dataset
(i.e., TKY). The possible cause of dropping would be the over-smoothing issue.

Impact of Heads Number. To explore the impact of choosing number of
heads in spatial-temporal aggregation layer, we search from set {1, 2, 4, 8, 16}.
From Figure 4, our MSTHN is insensitive to the number of heads on both Re-
call and NDCG metrics, and obtains the best performances with 8 heads on
three datasets. With number of heads increasing from 8 to 16, Recall@10 and
NDCG@10 on three datasets drop. The possible cause would be the over-fitting
in capturing spatial-temporal correlations within user-POI interactions in the
local view.

Fig. 3. Impact of Layer Number Fig. 4. Impact of Head Number
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Fig. 5. Effect of Local View on Recall@10 Fig. 6. Effect of Local View on NDCG@10

5.5 Further Study

To explore the effect of our proposed local view, we maintain other parts of
MSTHN and replace local view with STAM [27] and LightGCN [7]. From Figure
5-6, on both Recall@10 and NDCG@10, our MSTHN outperforms these variants
and the variant with STAM performs better than that with LightGCN. It proves
the effectiveness of capturing spatial-temporal correlations within user-POI in-
teractions. STAM utilizes users sequential dependency to update representations
of POIs (e.g., if a POI has been visited by user u1 → u2 → u1, STAM would take
u1 → u2 as input), which ignores repeated visiting patterns and another existing
sequential dependency (i.e., u2 → u1), and leads to a sub-optimal performance.
Thus, our proposed local spatial-temporal enhanced graph neural network could
well address the limitation by learning in an asymmetric way. Moreover, the
results against variant with STAM also indicate the significance of non-adjacent
POI-POI geographical relations for next POI recommendation.

6 Conclusion

In this paper, we propose a novelMulti-View Spatial-Temporal EnhancedHyper-
graph Network (MSTHN) for next POI recommendation, which jointly learns
representations from both local and global views. Through the spatial-temporal
enhanced graph neural network and interactive hypergraph neural network,
MSTHN could capture important spatial-temporal correlations within user-POI
interactions and high-order collaborative signals across users. Experimental re-
sults on three datasets demonstrate the effectiveness of our MSTHN.
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