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Abstract—With the popularity of location-based social net-
works (LBSNs), Point-of-Interest (POI) recommendation has
become an essential location-based service to help people explore
novel locations. Although the massive check-in data bring a
good opportunity, there are still many challenges in building
personalized POI recommender systems based on geographical
information. First, current coarse-grained geographical models
provide considerably limited improvements on POI recommen-
dations and fail to capture the overall impact of fine-grained
geographical characteristics in LBSNs. Second, previous methods
such as matrix factorization always give equal weight to each
positive example and may not distinguish between their different
contributions in learning the objective function. To cope with
these challenges, we develop a fine-grained POI recommendation
framework that makes full use of the geographical characteristics
from both users’ and locations’ perspectives. For capturing
the fine-grained geographical influence, we present a unified
probability distribution model based on four key geographical
characteristics. For mining more contribution information from
positive examples, we assign a higher weight to highlight the
contribution of a higher check-in frequency by employing a
logistic matrix factorization. Finally, experimental results on two
real-world datasets demonstrate the effectiveness and superiority
of the proposed method.

Index Terms—POI Recommendation; Geographical Charac-
teristics; Location-based Social Network

I. INTRODUCTION

With the popularity of smart mobile devices and advances in
location acquisition and wireless communication technologies,
location-based social networks (LBSNs), which bridge the
gap between the physical world and online social network-
ing services, have become prevalent. Online LBSNs such
as Foursquare and Yelp are attracting millions of users to
use and share information. On these platforms, users can
post their physical locations and share experiences of visiting
Point-of-Interests (POIs), e.g., restaurants, shopping malls, and
theaters via check-in behaviors. Fig. 1 gives an overview of a
typical LBSN. A tremendous volume of check-in data provide
an unprecedented opportunity to understand human mobility
patterns [1], benefiting a series of location-based services such
as urban computing and POI recommendation [2]. In this
paper, we aim to provide a systematic POI recommendation
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Fig. 1. A location-based social network. In the LBSN, users can establish
social relationships with others to share their experiences of visiting some
POIs through making check-ins at these POIs via their mobile devices.

service with the help of large-scale individual trajectory data
in LBSNs.

Currently, various types of contextual information provide
a good chance for improving the quality of POI recommenda-
tions. A series of studies have been focused on incorporating
geographical [3], social [4] and temporal [5] information
into the recommendation process. Among these contextual
information, geographical characteristics of users and POIs
(e.g., activity ranges of users and geographical coordinates
of POIs) play a prominent role. In particular, several repre-
sentative models, such as power-law distribution [6], multi-
center Gaussian distribution [7], kernel density estimation [8],
and graph embedding methods [3], [9], [10], are proposed to
capture the geographical influence in POI recommendations.
Building personalized POI recommendations based on geo-
graphical influence is a very challenging problem due to two
important reasons. First, geographical information contains
two POI attributes from a location perspective: geographical
coordinates of POIs and the distance among POIs. It also
includes two user attributes from a user perspective: activity
ranges of users and the distance between user centers (e.g.,
user home and work place) and POIs. However, these methods
utilizing geographical information [3], [6]–[10] rarely consider
the impact of such fine-grained geographical characteristics
from both users’ and locations’ perspectives. Moreover, these
methods model the above two distance distributions separately
and may not catch the interaction of the two types of distance
and activity ranges of users. Second, user-generated check-
in data in LBSNs is indeed a kind of implicit feedback
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data, which means only positive observations are available in
practice. Most traditional recommendation methods such as
Matrix Factorization (MF) [7], [11]–[13] give equal weight to
each positive example and may not distinguish between their
different contributions in learning the objective function. How-
ever, in POI recommendations, a higher check-in frequency
corresponds to a larger confidence of preference for the POI.

To address the aforementioned challenges, we propose a
fine-grained POI recommendation framework which makes
full use of the geographical characteristics from both users’
and locations’ perspectives. The framework is composed of
two modules: geographical module and check-in module.
They are used to capture the geographical influence and
explore check-in frequency contributions, respectively. For
capturing the geographical influence, we estimate a unified
probability distribution on geographical characteristics, i.e.,
geographical coordinates of POIs, the distance among POIs,
activity ranges of users and the distance between user centers
and POIs. For mining more contribution information from
positive examples, we assign a higher weight to highlight the
contribution of a higher check-in frequency. More specifically,
we employ a logistic matrix factorization (an effective prob-
abilistic model for implicit feedback data) [14] to model the
probability of the event that users have chosen to interact with
POIs by a parameterized logistic function. Next, we integrate
the two modules into a unified POI recommendation frame-
work to enhance the performance of recommendations. Finally,
experimental results on two real-world datasets demonstrate
that a significant improvement of our proposed method in
terms of various metrics, compared with the state-of-the-art
methods.

In summary, the main contributions are listed as follows:
• We propose a fine-grained POI recommendation frame-

work based on geographical characteristics, which cap-
tures the geographical influence from both users’ and
locations’ perspectives and explores check-in frequency
contributions.

• To model the fine-grained geographical influence, we
present a unified probability distribution model based on
four key geographical characteristics.

• To mine the frequency contribution, we employ a logistic
matrix factorization to model the probability of the event
that users interact with POIs by assigning a higher weight
to a larger check-in frequency.

• To evaluate our POI recommendation framework, we
conduct it on two large-scale real-world datasets and the
results show that our framework works efficiently.

The rest of this paper is organized as follows. Section II
presents the related work. Section III formalizes our research
problem and presents the proposed model in details. Section
IV reports the experimental results. We finally conclude this
study in Section V.

II. RELATED WORK

POI recommendation as an important location-based service
in LBSNs has been drawn great research attention from both

academia and industry in recent years. In order to enhance the
performance of POI recommendation, advanced techniques are
leveraged to capture more influences, including geographical,
social and temporal influences [15]. Among these, geograph-
ical influence (e.g., distances among POIs) is a basic and
indispensable. Many previous studies [2], [3], [6], [7], [9],
[16] learned user preference for POI recommendation using
geographical information. For example, the distance distribu-
tion among POIs and the distance distribution between user
centers and POIs are commonly used to capture geographical
influence [6]–[8]. Besides, other researchers employed graph
embedding techniques such as bipartite graph learning [10]
and neural networks [16], [17] to get location embeddings in
a low-dimension vector space. Unfortunately, these methods
utilizing geographical information rarely consider the impact
of such fine-grained geographical characteristics from both
users’ and locations’ perspectives. Moreover, these methods
[6]–[8] model the above two distance distributions separately
and may not catch the interaction of the two types of distance
and activity ranges of users.

Also, some studies [6], [11] have applied traditional recom-
mendation methods to POI recommendation. These techniques
can be grouped into two categories, namely memory-based and
matrix factorization. Memory-based method [6] mainly found
similar users or items to the target user or item based on their
check-in records by using a similarity measure, such as Cosine
similarity or Pearson correlation. Matrix factorization methods
[7], [11], [13] learned users’ and POIs’ latent factors that
represent inherent features of users and locations. However,
these methods always give the equal weight to each positive
example and may not distinguish between their different
contributions in learning the objective function.

In this paper, comparing our work with these existing
ones, there are many differences. First, we estimate a unified
probability distribution using such fine-grained geographical
characteristics, including two POI attributes from a location
perspective and two user attributes from a user perspective.
Second, the geographical module not only captures the above
two distance distributions simultaneously but also catch the
interaction of the two types of distance and activity ranges
of users. Finally, we mine more useful information from
positive examples by placing a higher weight to highlight the
contribution of a larger check-in frequency.

III. PROPOSED MODEL

A. Problem Definition

Let U = {u1, u2, . . . , un} be a set of users, where each user
u checked in some POIs Lu. For each user u, there exists some
check-in centers Mu such as the user’s home and work place.
Let L = {l1, l2, . . . , lm} be a set of POIs, where each POI
l has a geographical coordinate l = {lon, lat} represented
by longitude and latitude. We denote the user-POI check-in
matrix by C ∈ R

m×n, in which each entry cul represents the
check-in frequency of user u on POI l.

Given user-POI check-in matrix C, the geographical coor-
dinates of POIs, and a user’s check-in centers Mu, the task
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of POI recommendation is to predict the preference score ru,l
for the user u to an unvisited POI l, and then return the top-N
POIs with the highest recommendation score ru,l to user u.

B. Geographical Module

Distinctly from traditional items, such as book, film and mu-
sic recommendations, in LBSNs users are quired to physically
interact with POIs to check in. Thus, geographical coordinates
of POIs (i.e., latitude and longitude) are the most essential and
helpful information in LBSNs. Indeed, the Toblers First Law of
Geography states that Everything is related to everything else,
but near things are more related than distant things. Based on
this, we can infer many contributing geographical attributes
from a user perspective and a location perspective. First, com-
bining users’ check-in records, the study [7] clustered users’
whole historical check-ins and found users’ behavior exists
several centers (e.g., home and work place). Inspired by this,
activity ranges of users and distances between users’ check-
in centers and POIs should be taken into account because
they measure the cost of users checking in POIs. That is,
one tends to visit POIs near his centers instead of the distant
ones that exceed his activity ranges. Second, according to the
distance distribution among POIs that users visited historically,
the research [6] demonstrated that users may be interested
in exploring nearby POIs of the POI that users like, even
though they are far away from users’ centers. For instance,
one has a high probability to watch the film at the nearby
cinema after eating with friends. Therefore, modeling such
fine-grained geographical characteristics has a significant on
capturing the geographical influence.

In view of the above geographical nature, we propose a
personalized geographical model to estimate a unifed proba-
bility distribution on fine-grained geographical characteristics.
The geographical model is the linear combination of the User
model and POI model as follows:

PG(u, l) = αPU (u, l) + (1− α)PP (u, l) (1)

where α is a parameter that balances the influence of User
and POI models. PU (u, l) and PP (u, l) are the predicted
probability distributions by User and POI models, respectively.

The User model is designed for capturing the impact of
activity ranges of users and distances between users’ check-in
centers and POIs. New POIs close to users’ centers are likely
to be recommended:

PU (u, l) =

∑
li∈Mu

exp(−Υu

2 ||li − l||2)
∑

lj∈L
∑

li∈Mu
exp(−Υu

2 ||li − lj ||2)
(2)

where ||.|| denotes the Euclidean norm in the geographical
space,

∑
lj∈L

∑
li∈Mu

exp(−Υu

2 ||li− lj||2) is the normaliza-
tion constant, and Υu is a parameter describing the width
of user u activity area. Here, we define it by consider-
ing the distance between POI and a user’s home: Υu =
max

{
||lk − hu||2

}
, lk ∈ Lu, where hu represents the user’s

home.

The POI model aims at capturing the impact of the distance
among POIs that users visited. New POIs near POIs that users
checked in are possible to be recommended:

PP (u, l) =

∑
li∈Lu

exp(−Φu

2 ||li − l||2)
∑

lj∈L
∑

li∈Lu
exp(−Φu

2 ||li − lj ||2)
(3)

where
∑

lj∈L
∑

li∈Lu
exp(−Φu

2 ||li − lj||2) is the nor-
malization constant, and Φu is an adaptive bandwidth
that depicts average visiting distance of user u: Φu =
mean

{
||lj − lk||2

}
, lj , lk ∈ Lu.

C. Check-in Module

In LBSNs, the user-generated check-in data is a kind of
implicit feedback data, which means we only obtain posi-
tive examples. Some traditional recommendation methods [7],
[11]–[13] often give the equal weight to each positive example
and may not distinguish between their different contributions
in learning the objective function. However, the check-in
frequencies of a user on POIs reflect the confidences of being
fond of them. The check-in patterns of higher frequencies indi-
cate the preferences of higher confidences. For fully mining the
contributions of check-in frequencies in the check-in module,
we place a higher weight to highlight the importance of a
larger check-in frequency.

More specifically, we employ a logistic matrix factorization
that is an effective probabilistic model for implicit feedback
data [14] to model the probability of the event that users
have chosen to interact with POIs by a parameterized logis-
tic function. The model learns user low-dimensional matrix
P ∈ R

m×d and POI low-dimensional matrix Q ∈ R
n×d by

factorizing the user-POI matrix C. Column vectors pu and ql
represent user-specific and POI-specific latent factor vectors,
respectively. Thus, the probability of the check-in event is
given by,

PC (xul|pu, ql, βu, βl) =
exp(puq

T
l + βu + βl)

1 + exp(puqTl + βu + βl)
(4)

where xul denotes the event that user u checks in POI l. βu

and βl represent user and POI biases, which are meant to
account for variation in behavior across both users and POIs.
For example, some users are active users that tend to visit a
diverse assortment of POIs while others only check in a limited
number of POIs. Likewise, some POIs are very popular and
attract a broad visitors to check in while other POIs are less
popular and have a niche group.

By placing a higher weight to highlight the contribution of a
higher check-in frequency, we use a log scaling function such
as:

wul = 1 + γlog(1 + cul), (5)

where γ is a tuning parameter.
Given parameters P , Q and β, the likelihood over check-in

frequencies can be inferred:

P (C|P ,Q, β) =
∏

u,l

PC (xul|pu, ql, βu, βl)
wul

(1− PC (xul|pu, ql, βu, βl))

(6)
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TABLE I
STATISTICAL INFORMATION OF THE TWO DATASETS

Statistical item Foursquare Gowalla

Number of users 7,642 5,628

Number of POIs 28,484 31,803

Number of check-ins 512,523 620,683

User-POI matrix density 0.13% 0.22%

A zero-mean Gaussian prior is placed to on the user and POI
latent spaces. Furthermore, the log of posterior distribution
over P and Q can be derived by utilizing the method of
maximum a posterior (MAP). We get the objective function
as follows:

J(P ,Q, β; C) =
∑

u,l

wul(puq
T
l + βu + βl)

− (1 + wul)log(1 + exp(puq
T
l + βu + βl))

− λ

2
(||pu||2 + ||ql||2)

(7)

where λ is the regularization constant that avoids overfitting.
Finally, we use an alternating gradient ascent to update

latent factor vectors pu, ql and biases β.

D. Recommendation Framework

The aim of recommendation is to predict the preference
score ru,l of a user u on an unvisited POI l, and then recom-
mend a top-N POIs according to preference scores. Hence, the
score can be computed by integrating the geographical module
with check-in module.

ru,l = PG(u, l) · PC (xul|pu, ql, βu, βl) (8)

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we empirically evaluate the performance of
our proposed recommendation method. Extensive experiments
are performed on two real-world LBSN datasets, Gowalla and
Foursquare.

A. Datasets Description

In this study, we perform our experiment on two public
datasets, which are collected from Gowalla and Foursquare
[15], [18]. Gowalla contains check-in data ranging from Febru-
ary 2009 to October 2010 while Foursquare includes check-in
data ranging from April 2012 to September 2013. Each check-
in record in the datasets provides a user ID, a location ID and a
timestamp, where each location has latitude and longitude. We
empirically select users who have at least 15 check-in POIs
and remove POIs that have fewer than 10 visitors on Gowalla.
Similarity, we filter out those users who have fewer than 10
check-in POIs and those POIs which are visited by less than
10 users on Foursquare. We summarize the data statistics for
all datasets in Table I.

In our experiments, we divide the dataset into training set,
tuning set and test set in terms of the user’s check-in time. For
each user, the earliest 70 % check-ins are selected as training
data, the most recent 20 % check-ins as test data and the
remaining 10 % as the tuning data.

B. Evaluation Metrics

We utilize two widely-used metrics to evaluate the perfor-
mance of the model we proposed: precision (Pre@N ) and
recall (Rec@N ) [15], where N is the number of recommended
POIs.

Pre@N and Rec@N . Pre@N defines the ratio of dis-
covered POIs to the total number N of recommended POIs,
and Rec@N measures the ratio of discovered POIs to the
number of visited POIs in the testing set. Given the top-
N recommendation list of POIs Ru(N) for user u, they are
formally defined as follows:

Pre@N =
1

|T |
∑

u∈T

|Ru(N) ∩ Vu|
N

(9)

Rec@N =
1

|T |
∑

u∈T

|Ru(N) ∩Vu|
|Vu|

(10)

where T denotes the set of users in the testing data, and Vu

represents the set of visited POIs in the testing set.

C. Baseline Methods

To illustrate the performance of our proposed POI rec-
ommendation framework, we thus introduce the following
baseline methods to compare.

• Pop: Pop method recommends the top-N most popular
POIs to users.

• LMF [14]: This is an effective probabilistic model for
matrix factorization with implicit feedback.

• USG-G [6]: This is a typical POI recommendation ap-
proach that uses the Power-law distribution to capture the
geographical influence.

• GS2D [19]: This is a typical geographical model that
provides a personalized geographical influence using a
kernel density estimation.

• FMFMGM [7]: This is a recommendation framework
based on Poisson factor factorization, which exploits
geographical influence with Multi-center features.

• GeoSoCa-G [20]: This is a geographical module of
GeoSoCa recommendation framework, which uses check-
in distribution to build an adaptive kernel estimation.

• L-WMF [21]: This is a location neighborhood-aware
weighted probabilistic matrix factorization method that
exploits geographical relationships among POIs.

D. Experiment Setup

For all baseline methods, we use the optimal setting reported
in the corresponding papers. In our experiments, all critical
parameters are tuned via cross-validation. Empirically, for the
check-in module, the regularization parameter λ is set by 0.6.
In Foursquare data, the balance parameter α is set to 0.9, the
tuning parameter γ is set to 50 and the latent factor dimension
d = 10. In Gowalla data, the balance parameter α is set to
0.95, the tuning parameter γ is set to 70 and the latent factor
dimension d = 10. For the parameters α, γ, d, we will discuss
the effect of them in the Section IV-F.
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E. Performance Comparison

The performance of our framework and baseline methods in
terms of Pre@N and Rec@N on Foursquare and Gowalla data
are shown in Fig. 2 and Fig. 3. From the results, we can see
that FGCRec consistently outperforms the relevant POI recom-
mendation methods on the two datasets. Firstly, we compare
the performances of the proposed method FGCRec and four
coarse-grained geographical models (i.e., GS2D, FMFMGM,
GeoSoCa-G, and USG-G). On the one hand, USG-G outforms
GS2D, FMFMGM, and GeoSoCa-G in terms of Pre@N and
Rec@N metrics on all datasets. On the other hand, FGCRec
has a significantly large improvement over the second best
coarse-grained geographical model USG-G. Particularly, as
shown in Fig. 2(a) and Fig. 3(a), FGCRec attains 27.27%
and 32.2% better performance than USG-G over all datasets,
in terms of Pre@10. One possible reason is that coarse-
grained geographical approaches only model the two types
of distance (i.e., distances among POIs and distances between
user centers and POIs) separately, but ignore the impact of
fine-grained geographical characteristics, e.g., activity ranges
of users and the interaction of them. Secondly, compared
with Pop method, our recommendation algorithm presents an
absolute advantage. For example, in terms of Pre@10, the
improvments of FGCRec over Pop are 30.23% and 74.38%
respectively, on Foursquare and Gowalla. This indicates that
FGCRec is an appropriate choice to provide personalized
POI recommendations. Thirdly, our framework significantly
outperforms the other two state-of-the-art algorithms LMF and
L-WMF for implicit feedback data. For instance, in terms
of Rec@20, as shown in Fig. 2(b) and Fig. 3(b), FGCRec
outperforms LMF and L-WMF by 30.4%, 12.3% and 15.24%,
4.28%, on average. The possible reason is that placing a
higher weight to highlight the contribution of a higher check-
in frequency in logistic matrix factorization works effectively
for utilizing check-in data in POI recommendations.

In addition, comparing the performance on Foursquare
against Gowalla, we can clearly see that the metrics of
FGCRec on Gowalla is better than Foursquare. Especially,
the performance of FGCRec achieves 0.028 and 0.0354 over
Foursquare and Gowalla datasets, in terms of Pre@10. The
possible reasons are three-fold: (1) The user-POI matrix den-
sity on Gowalla is larger than on Foursquare, which is reflected
in Table I. (2) The number of visited POIs per user on Gowalla
is more than on Foursquare. (3) The activity area of the
Foursquare users is wider than the Gowalla users.

F. Parameter Selection

Tuning model parameters is critical to the performance
of the proposed FGCRec. In the geographical module of
FGCRec, the impact of fine-grained geographical character-
istics in User and POI models is controlled by the balance pa-
rameter α. In the check-in module of FGCRec, the impacts of
log scaling function and latent vector dimension are controlled
by the parameters γ and d, respectively. Due to limited space
and similar results, we only present the parameter selection
process on Foursquare data.

(a) Pre@N on Foursquare (b) Rec@N on Foursquare

Fig. 2. Top-N Performance on Foursquare

(a) Pre@N on Gowalla (b) Rec@N on Gowalla

Fig. 3. Top-N Performance on Gowalla

Impact of Balance Parameter α. Fig. 4(a) reports the
impact of parameter α. By observing the results, we find that
the recommendation performances of FGCRec first decrease
with the increasing number of parameter α, and then it
increases gradually when the number of α is larger than 0.3.
Finally, it hits the best performance when α= 0.9. It is the best
weight of User model and POI model. This is an interesting
change, indicating that User model is more important than POI
model in the geographical module. One possible explanation
is that the recommendation process is primarily to infer users’
intent, so geographical characteristics associated with users
play a dominant role.

Impact of Tuning Parameter γ. Fig. 4(b) depicts the
impact of parameter α. From the experimental results, we ob-
serve that the performances of FGCRec first improve quickly
with the increase of the value of parameter γ and then drop
down rapidly when it is larger than 50. When γ = 50, the
performance hits the highest prediction accuracy. It is the
optimal value to scale check-in frequencies of users on POIs.
This indicates that assigning higher weights to highlight the
importance of higher check-in frequencies by employing logis-
tic matrix factorization is effective for POI recommendations.

Impact of Latent Factor Dimension d. Fig. 4(c) in-
vestigates the impact of latent factor dimension d. In our
experiment, following the existing work [14], we set a differing
number of latent factors d ranging from 10 to 90 with an
increment of 10 to observe the impact. From the results, it is
observed that d = 10 is the most suitable setting in Foursquare
dataset. We also find that the performances of FGCRec drop
drastically by increasing d from 10 to 90. We speculate this is
because that the learned suitable latent factors dimension can
better reflect the underlying relationships, but when it exceeds
the threshold, the reconstruction of users’ preferences on POIs
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(a) Impact of Balance Parameter α (b) Impact of Tuning Parameter γ (c) Impact of Latent Factor Dimension d

Fig. 4. Impact of Parameters α, γ and d on Foursquare Data

are insufficient to provide accurate POI recommendations.

V. CONCLUSION

In this paper, we propose a fine-grained POI recommenda-
tion framework, named FGCRec, which takes full advantage
of the geographical characteristics from both users’ and lo-
cations’ perspectives. The FGCRec consists of two modules:
geographical module and check-in module. The geographical
module is used to capture the geographical influence by
estimating a unified probability distribution using fine-grained
geographical characteristics. The check-in module is to mine
more contributions from positive examples by assigning a
higher weight to highlight the contribution of a higher check-
in frequency employing a parameterized logistic function. Fi-
nally, extensive experimental results on two real-world LBSNs
data validate the effectiveness of the proposed FGCRec.
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