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Abstract. POI (point-of-interest) recommendation as an important
location-based service has been widely utilized in helping people dis-
cover attractive locations. A variety of available check-in data provide
a good opportunity for developing personalized POI recommender sys-
tems. However, the extreme sparsity of check-in data and inefficiency of
exploiting unobserved feedback pose severe challenges for POI recom-
mendation. To cope with these challenges, we develop a heterogeneous
graph embedding-based personalized POI recommendation framework
called HRec. It consists of two modules: the learning module and the
ranking module. Specifically, we first propose the learning module to
produce a series of intermediate feedback from unobserved feedback by
learning the embeddings of users and POIs in the heterogeneous graph.
Then we devise the ranking module to recommend each user the ultimate
ranked list of relevant POIs by utilizing two pairwise feedback compar-
isons. Experimental results on two real-world datasets demonstrate the
effectiveness and superiority of the proposed method.

Keywords: POI recommendation · Graph embedding · Personalized
ranking

1 Introduction

Location-based social networks (LBSNs) have become popular recently because
of the increasing proliferation of smart mobile devices with location-acquisition
that make people easy to post their real location and location-related contents.
These LBSNs like Foursquare, Facebook Places, and Yelp allow users to make
friends and share their check-in experiences on Points-of-Interests (POIs), e.g.,
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restaurants, stores, and museums. Driven by a vast amount of check-in data
collected, POI recommendation arises to improve the user experience. It has
become an important location-based service to help people explore interesting
and attractive places [3].

The task of POI recommendation is to model users’ preferences and suggest
novel POIs to users. It is a very challenging problem due to two major reasons.
First, the check-in data are extremely sparse, which significantly increases the
difficulty of POI recommender systems. In fact, a single user usually chooses only
a small portion from millions of POIs to check in. This will make the user-POI
matrix very sparse. In the literature, some researchers have sought to utilize
social information and geographical information to supplement the highly
sparse user-POI matrix. Most existing approaches have been proposed to incor-
porate social relations between users into collaborative filtering (CF) techniques,
e.g., friend-based CF [16], matrix factorization with social regularization [1], and
friend-based matrix factorization [2]. However, these methods provide consider-
ably limited improvements on POI recommendation because social links of users
are also sparse. On the other hand, most related works [1,5,10,12] attempt to
establish independent geographical models to recommend POIs. Nonetheless,
such modeling approaches only mean that the check-in activity is limited to
the distance constraint and do not effectively represent users’ preferences. Sec-
ond, unobserved feedback is implicit and its number is very large, which will
lead to the inefficiency of computation and the inaccuracy of prediction. Some
researchers [2,6,8,13] have proposed to ranking-based models to alleviate this
situation. Bayesian Personalised Ranking (BPR) [8] is a famous ranking-based
model, which learns the ranking based on pairwise preference comparison over
observed and unobserved feedback. However, due to the imbalance between users’
visited POIs and non-visited POIs, the BPR model cannot successfully enhance
prediction accuracy.

More recently, graph embedding methods which embed information networks
into low-dimensional vector spaces have been widely adopted for a variety of
tasks such as link prediction, text mining, and sentiment analysis [9]. Such low-
dimensional representation is denser than the user-POI check-in matrix, so graph
embedding is a potential and powerful solution to alleviate the problem of data
sparsity. In this paper, we extend these efforts and propose a Heterogeneous
graph embedding-based personalized POI Recommendation framework (HRec)
to effectively address the aforementioned challenges. The overall architecture
of HRec is shown in Fig. 1. Our recommendation framework consists of two
modules, one of which is the learning module and the other is the ranking
module. (1) The learning module is to generate a series of intermediate feed-
back from unobserved feedback by exploiting social and geographical information
networks, which is treated as weak preference relative to positive feedback while
as strong preference in comparison to other unobserved feedback. The module
learns vector representations for the nodes (i.e., users and POIs embeddings)
in the heterogeneous graphs and then uses the learned representations for gen-
erating intermediate feedback. (2) The ranking module is to recommend each
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Fig. 1. The architecture framework of HRec.

user a ranked list of relevant POIs that the user might be interested in but has
not visited before. In this module, we augment the ranking function of BPR by
introducing the intermediate feedback generated by the learning module. Fur-
thermore, we design a mini-batch gradient descent (MBGD) with the bootstrap
sampling algorithm to optimize its objective function. Finally, we evaluate the
proposed framework on two large-scale real-world datasets and prove its superi-
ority to several state-of-the-art baselines.

To summarize, our work makes the following contributions:

1 We develop a Heterogeneous graph embedding-based personalized POI Rec-
ommendation framework (HRec) to overcome the data sparsity issue and inef-
ficiency of exploiting unobserved feedback. The HRec consists of two modules:
the learning module and the ranking module.

2 The learning module in HRec is devised for generating a series of intermediate
feedback from unobserved feedback by learning the embeddings of users and
POIs in the heterogeneous graph.

3 The ranking module in HRec is designed for recommending each user the
ultimate ranked list of relevant POIs by utilizing two pairwise feedback com-
parisons.

4 We conduct extensive experiments on real-world datasets. Experimental
results prove the effectiveness and efficiency of the proposed HRec frame-
work.

2 Related Work

In this section, we discuss some existing works related to our research, particu-
larly those employing social and geographical information for POI recommenda-
tion. As the main learning and ranking modules fall within the realm of graph
embedding and personalized ranking, we also review these related techniques.

Based on the fact that friends are more likely to share common interests,
social information is widely used in POI recommender systems [2]. In particular,
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friend-based collaborative filtering [12] and matrix factorization with social reg-
ularization [1] are two effective algorithms in LBSNs, which both integrate social
relationship information into the collaborative filtering techniques to improve the
quality of POI recommendation. Besides, Zhang et al. [15] designed a model to
estimate the social check-in frequency by using a power-law distribution learned
from historical check-ins of all users. Since the geographical characteristics of
locations can affect users’ check-in behavior, geographical information plays an
important role in POI recommendation [1,5,10,12,13,15]. On the one hand, geo-
graphical distance between users and POIs limits users’ check-in choice. On the
other hand, as Tobler’s First Law of Geography shown, geographical clustering
phenomenon is very common in users’ check-in activities. In particular, several
representative models, such as power law distribution (PD) model [12], Multi-
center Gaussian distribution model (MGM) [1], and Kernel Density Estimation
(KDE) [14], are proposed to capture the geographical influence in POI recom-
mendation.

Graph embedding techniques that embed information networks into low-
dimensional vector spaces have attracted considerable attention and made great
progress in recent years. For example, Xie et al. [11] proposed a graph embedding
model for POI recommendations to systematically model the POI, user, and time
relations and learned the representations. Zhao et al. [17] proposed a temporal
POI embedding based on Skip-Gram model to capture users’ temporal prefer-
ence. However, few works based on graph embedding attempt to exploit social
relations between users and geographical neighborhood characteristics between
POIs for POI recommendations. From the perspective of ranking tasks, these
collaborative filtering-based methods mentioned above can be viewed as point-
wise methods. Indeed, empirical studies [6,13] have demonstrated that point-
wise methods are generally less effective than pairwise ranking methods. Yuan
et al. [13] proposed a GeoBPR model that injects users’ geo-spatial preference.
Manotumruksa et al. [6] developed a novel personalized ranking framework with
multiple sampling criteria to enhance the performance of POI recommendation.

In this paper, our work distinguishes itself from previous researches in several
aspects. First, to the best of our knowledge, it is the first effort that exploits social
relations between users and geographical neighborhood characteristics between
POIs to address the challenges of data sparsity and inefficiency of unobserved
feedback in a unified way. Second, we generate a series of intermediate feedback
from unobserved feedback in the learning module to augment the ranking func-
tion of Bayesian Personalised Ranking (BPR) [8]. Moreover, we integrate the
embeddings of users and POIs and BPR in a systematic way for POI recommen-
dations.

3 Problem Statement

Let users and POIs denoted by U = {u1, u2, ...} and L = {l1, l2, ...}. Each user
u checked in some POIs Lu. Each POI has a location lj = {lonj , latj} in terms
of longitude and latitude. We use Fu = {f1, f2, ...} to represent the set of the
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user’s friends. In this paper, we consider three different types of feedback, namely
positive, intermediate, negative feedback. The positive feedback is defined as a
set of POIs previously checked in by user u: Pu = Lu. The intermediate feedback
Iu = {l1, ..., lc} is learned from unvisited POIs in the learning module. The
remaining unvisited POIs are viewed as the negative feedback Nu = {l1, ..., lh}.
Here negative only means no explicit feedback can be observed from the user
and does not denote users’ dislike of the POIs.

Definition 1. User-POI Graph, denoted as Gul = (U ∪ L, Eul), is a bipartite
graph where Eul is the set of edges between users and POIs. The weight wul

between user u and POI l is simply defined as the frequency of user u checked in
POI l.

Definition 2. User-Friend Graph, denoted as Guf = (U ∪ F , Euf ), is a
social relation graph where F is a set of users’ friends and Euf is the set of
edges between users and friends. The weight wuf between user u and friend f
is defined as common check-in ratio between user u and his friend f , which is
measured by |Lu∩Lf |

|Lu∪Lf | .

Definition 3. POI-POI Graph, denoted as Gll = (L ∪ L, Ell), captures the
geographical neighborhood characteristics between POIs. In general, if POI li is
a geographical neighbor of POI lj, there will be an edge between li and lj. The
weight wij of the edge between li and lj is set to 1 when POI li is the neighbors
in geographical space to POI lj.

Problem 1 (POI Recommendation). Given a user check-in record Lu, the
geographical coordinates of POIs and the user’s social friends Fu, the task of
POI recommendation is to generate a ranked list of POIs that the user might
be interested in but has not visited before in LBSNs.

4 POI Recommendation Framework

4.1 Learning Module

In this module, the aim is to generate a series of intermediate feedback from
unobserved feedback by learning the user and POI embeddings of heterogeneous
information networks. We adopt the bipartite graph embedding approach from
Tang et al. [9], which is a representation learning method for heterogeneous text
networks.

Bipartite Graph Embedding. Given a bipartite graph GAB = (VA ∪ VB , E),
where VA and VB are two disjoint sets of vertices of different types, and E is the
set of edges between them. The conditional probability of vertex vi in set VA

generated by vertex vj in set VB can be defined as:

p(vi|vj) =
exp(zT

i · zj)∑
vk∈VA

exp(zT
k · zj)

(1)
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where zi denotes the embedding vector for vertex vi, and zj is the embedding
vector of vertex vj . For each vertex vj in VB , Eq. (1) defines a conditional
distribution p(·|vj) over all the vertices in the set VA. For each edge eij , its
empirical distribution is given by p̂(vi|vj) = wij

degj
, where wij is the edge weight

between vi and vj and degj =
∑

i∈VA
wij .

To learn embeddings, we make the conditional distribution p(·|vj) closely
approximates the empirical distribution p̂(·|vj). Hence, we minimize the following
objective function over the graph GAB :

OAB =
∑

j∈VB

λjd(p̂(·|vj), p(·|vj)) (2)

where d(·, ·) is the KL-divergence between two distributions, and λj is the impor-
tance of vertex vj in the graph, which can be set as the degree degj . Omiting
some constants, the objective function can be writen as:

OAB = −
∑

(i,j)∈E
wij log p(vi|vj) (3)

Optimizing the objective function Eq. (3) is computationally expensive,
which requires the summation over the entire set of vertices when calculating
the conditional probability p(·|vj). To overcome this problem, we use the tech-
niques of edge sampling [9] and negative sampling [7]. For each edge eij , its final
objective function is:

OAB = −
∑

(i,j)∈E

[

log σ(zT
i · zj) +

K∑

n=1

Evn∼Pn(v) log σ(−zT
n · zj)

]

(4)

where σ(x) = 1/(1 + exp(−x)) is the sigmoid function, K is the number of
negative edges. In our implementation, we set K = 5, Pn(v) ∝ d

3/4
v from the

empirical setting of [7], where dv is the out-degree of node v.

Joint Training Learning. The heterogeneous information network is composed
of three bipartite graphs: User-POI, User-Friend and POI-POI. To collectively
embed the three bipartite graphs, minimizing the sum of all objective functions
as following:

O = Oul + Ouf + Oll (5)

where
Oul = −

∑

(i,j)∈Eul

wij log p(ui|lj) (6)

Ouf = −
∑

(i,j)∈Euf

wij log p(ui|fj) (7)

Oll = −
∑

(i,j)∈Ell

wij log p(li|lj) (8)

We learn user and POI embeddings by joint training the three bipartite
graphs. In each step, we adopt the asynchronous stochastic gradient algorithm
(ASGD) to update the model parameters. See Algorithm 1 for more details.
Finally, we sort all unobserved POIs in accordance with their scores s = zT

uzl
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to acquire the Top-t as intermediate feedback for each user, where zu,zl are
embeddings for user u, POI l and t is the number of intermediate feedback we
defined.

Algorithm 1. Joint training
Input: Bipartite graphs (User-POI graph Gul, User-Friend graph Guf , POI-POI graph

Gll), number of samples T , number of negative samples K, vector dimension d.
Output: users embeddings: Zu ∈ R

|U|×d and POI embeddings Zl ∈ R
|L|×d

1: while iter ≤ T do
2: sample an edge from Eul and draw K negative edges, and update the user and

POI embeddings;
3: sample an edge from Euf and draw K negative edges, and update the user

embeddings;
4: sample an edge from Ell and draw K negative edges, and update the POI embed-

dings;
5: end while

4.2 Ranking Module

In this module, we augment the ranking function of BPR by introducing the
intermediate feedback. Specifically, we treat the intermediate feedback as weak
preference relative to positive feedback while as strong preference in comparison
to other unobserved feedback. Compared with the basic assumption of BPR,
our assumption can mine more contribution information from unobserved POIs.
Thus, for user u, the ranking order of her preference over positive feedback
i ∈ Pu, intermediate feedback c ∈ Iu, and negative feedback j ∈ Nu is given as
the following:

{
r̂ui > r̂uc

r̂uc > r̂uj

⇒
{

WuHT
i + bi > WuHT

c + bc

WuHT
c + bc > WuHT

j + bj

(9)

where r̂ui is the predicted users’ preference score, which is modelled by matrix
factorization, i.e., r̂ui = WuHT

i + bi. The Wu and HT
i denotes latent feature

vectors of user u and POI i, respectively. The bi is the bias term of POI i. Thus,
model parameters Θ =

{
W ∈ R

|U|×k,H ∈ R
|L|×k, b ∈ R

|L|}.
Due to the BPR method gives equal weight to each POI pair, it does not dis-

tinguish between their different contributions in learning the objective function.
To address this limitation, we assign a higher weight to highlight its contribution.
To this end, we propose the augmented bayesian personalized ranking function
based on matrix factorization to compute the ranking loss function, given by:

J(Θ) = min
W,H

−
∑

u∈U

[
∑

i∈Pu

∑

c∈Iu

lnσ (cuic(r̂ui − r̂uc))

+
∑

c∈Iu

∑

j∈Nu

ln σ(r̂uc − r̂uj)

]

+ λΘ||Θ||2

(10)
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where cuic denotes the weight of the difference between positive and intermediate
feedback, and its value is determined by the difference of two visit frequencies
cuic = 1 + αfui, where α is a tuning parameter and fui represents the check-in
frequency of user u on POI i. λΘ are model specific regularization parameters
and σ(x) is the sigmoid function.

Algorithm 2. Ranking Algorithm
Input: feedback data: user u ∈ U , positive feedback Pu, intermediate feedback Iu,

and negative feedback Nu

hyperparameters: sampling times st, batch size bs, learning rate η, and regulariza-
tion parameters λu, λi, λc, λj , βi, βc, βj

Output: model parameters Θ = {W, H, b}
1: Initialization Θ with Normal distribution N (0,0.1)
2: for t = 1 to st do
3: Uniformly sample a user u from U
4: Uniformly sample a positive feedback i from Pu

5: Uniformly sample a intermediate feedback c from Iu

6: Uniformly sample a negative feedback j from Nu

7: end for
8: s = 0
9: while (s + 1) ∗ bs ≤ st do

10: for j = 1 to bs do
11: r̂uic = (1 − σ(cuic(r̂ui − r̂uc))) · cuic, r̂ucj = 1 − σ((r̂uc − r̂uj))
12: Wu ← Wu + η ([r̂uic(Hi − Hc) + r̂ucj(Hc − Hj)] − λuWu)
13: Hi ← Hi + η (r̂uicWu − λiHi)
14: Hc ← Hc + η (−r̂uicWu + r̂ucjWu − λcHc)
15: Hj ← Hi + η (−r̂ucjWu − λiHi)
16: bi ← bi + η (r̂uic − βibi)
17: bc ← bc + η (−r̂uic + r̂ucj − βcbc)
18: bj ← bj + η (−r̂ucj − βjbj)
19: end for
20: s = s + 1
21: end while
22: return Θ

We propose a Mini-batch Gradient Descent (MBGD) with the bootstrap
sampling to optimize the objective function. See Algorithm 2 for more details.

5 Experimental Evaluation

5.1 Datasets

We make use of two publicly available real-world datasets, Gowalla [4] and
Foursquare [2], to evaluate the performance of the proposed framework. Each
check-in record contains a user ID, a location ID, a timestamp and geo-
coordinates of the location. Also, data sets have social links information. The
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data statistics are shown in Table 1. In our experiments, we divide each dataset
into training set, tuning set and test set in terms of the user’s check-in time
instead of choosing a random partition method. For each user, the earliest 70%
check-ins are selected for training, the most recent 20% check-ins as testing, and
the next 10% as tuning.

Table 1. Statistical information of the two datasets

Statistical item Gowalla Foursquare

Number of users 5,628 2,551

Number of POIs 31,803 13,474

Number of check-ins 620,683 124,933

Number of social links 46,001 32,512

User-POI matrix density 0.22% 0.291%

5.2 Evaluation Metrics

We use two widely-used metrics [4] to evaluate the performance of the model
we proposed: precision (Pre@N) and recall (Rec@N), where N is the number of
recommended POIs. Pre@N refers to the ratio of recovered POIs to the top-N
recommended POIs and Rec@N measures the ratio of recovered POIs to the set
of visited POIs in the testing data.

5.3 Baseline Methods

To illustrate the effectiveness of our recommendation framework, we compare it
with the following state-of-the-art methods.

– Random: Random method is to recommend users with random POIs.
– BPR-KNN: This is a ranking-based adaptive model, which employs item-

based k-nearest-neighbor to recommend POIs [8].
– BPR-MF: This is a classical pairwise ranking model based on matrix fac-

torization [8].
– GeoBPR: This is a state-of-the-art method for POI recommendation, which

incorporates the geographic feedback into the BPR model [13].

5.4 Parameter Settings

For all the compared baselines, we adopt the optimal parameter configuration
reported in their works. In our experiments, all critical parameters are tuned
through cross-validation. Empirically, for the learning module, the vector dimen-
sion d is set to 100, the tuning parameter α is set to 0.5 and the number of
intermediate feedback t = 2000. In Foursquare dataset, the learning rate η is
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set to 0.001, the latent factor dimension k = 40, and regularization param-
eters λu = 0.005, λi = λc = λj = 0.005, βi = βc = βj = 0.006. In
Gowalla dataset, the learning rate η is set to 0.005, the latent factor dimension
k = 30, and regularization parameters λu = 0.005, λi = λc = λj = 0.005,
βi = βc = βj = 0.003. The effect of the latent factor dimension k will be
detailed later.

5.5 Experimental Results

Performance Comparisons. Results of all POI recommendation models in
terms of Pre@N and Rec@N on Foursquare and Gowalla are presented in Figs. 2
and 3, respectively. One can observe that HRec framework always outperforms
all the compared POI recommendation methods on the two datasets. On the
one hand, compared with non-ranking algorithm Random, our recommenda-
tion framework presents an absolute advantage. In fact, Random model out-
puts the lowest performance. For example, in terms of Pre@5 and Rec@5, HRec
attains 0.044, 0.0251 and 0.0298, 0.0134 on Foursquare and Gowalla datasets,
respectively. On the other hand, our framework significantly outperforms other
three ranking algorithms BPR-KNN, BPR-MF and GeoBPR. For instance, HRec
improves the second best recommendation algorithm GeoBPR by 33.3%, 39%
and 2.5%, 1.4% in terms of Pre@5, Rec@5 on Foursquare and Gowalla, respec-
tively. Based on the performance comparison of non-ranking and ranking algo-
rithms, the effectiveness and superiority of the proposed method HRec are
proved. The reasons are two fold: (1) HRec makes full of social and geographical
information by learning the embeddings of users and POIs in the heterogeneous

Fig. 2. Varying N on Foursquare

Fig. 3. Varying N on Gowalla
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graph. (2) HRec effectively exploits a series of intermediate POIs learned from
unvisited POIs and utilizes two pairwise feedback comparisons to greatly assist
ranking.

Fig. 4. Impact of data sparsity

Fig. 5. Influence of latent factor dimensions k

Impact of Data Sparsity. Here, we study how HRec deals with the data spar-
sity problem. In order to produce user-POI check-in matrix with different spar-
sity, we randomly reserve x% (x = 50,70,90,100) of check-ins from each user’s
visited records. The smaller the reserved ratio x is, the sparser the user-POI
check-in matrix is. Figure 4 reports Pre@5 and Rec@5 of all recommendation
algorithms on Foursquare under different sparsity. Due to Random outputs poor
performance, it is not added here for comparison. Based on the results, we can
observe that the Pre@5 and Rec@5 of all algorithms increase with the increase
of the reserved ratio x. One possible explanation is that, with the increase of the
proportion of the training set, the number of positive examples increases, and
then contributes to the improvement. We can further observe that our frame-
work HRec consistently outperforms all ranking and non-ranking baselines under
various data sparsity scenarios, which shows great strengths.

Parameter Sensitivity. In this study, we employ matrix factorization to pre-
dict the difference between the two scores of preference for users. Hence, in
this section, we study the influence of variable k, which is the number of latent
feature dimension. Due to limited space, we only show the performance of the
recommendation on Foursquare dataset. In our experiment, k is set to 20, 40,
60, 80 and 100, respectively. Figure 5 reports the recommended quality for dif-
ferent values of k. Based on the results, we can observe that the performance
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in all evaluation metrics has similar behaviour with the varying value of k. The
performance increases with the increase of the k at the beginning, then hits the
highest recommended quality when k = 40, and eventually tends to decline. The
above trend indicates that the performance achieves best at k = 40, and so we
finally choose the optimal parameter k = 40.

6 Conclusions

This paper presents a novel personalized POI recommendation framework called
the HRec, which can address the data sparsity issue and inefficiency of exploiting
unobserved feedback. The HRec consists of two modules: the learning module
and the ranking module. The learning module is designed for producing a series
of intermediate feedback from unobserved feedback by learning the embeddings
of users and POIs in the heterogeneous graph. The ranking module is devised for
recommending each user the ultimate ranked list of relevant POIs by effectively
exploiting intermediate feedback generated by the learning module. Experimen-
tal results on two real-world datasets demonstrate that HRec performs better
than other compared models for POI recommendations.

Acknowledgments. This work is supported by the National Key Research and Devel-
opment Program of China, and National Natural Science Foundation of China (No.
U163620068).
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